
Nordic Collegiate Programming Contest
NCPC 2006

September 30, 2006

Solution Sketches

A Shoot-out
B Tour Guide
C Nasty Hacks
D Jezzball
E Card Trick
F Traveling Salesman
G Whac-a-Mole
H Random Walking
I Honeycomb Walk

Problem A

Shoot-out

Problem author: Øyvind Grotmol

The state-space of this problem consists of all subsets of the cowboys with all possible
turns, in total N · 2N−1 possibilities or 53248 states for N = 13. The cowboy in turn
should consider each of his remaining enemies as a possible target and calculate what
probability he has of surviving if he hits, and on the basis of that information he
will decide on his target. The problem can thus be solved recursively, with dynamic
programming or memoizing to achieve acceptable run-time. There’s one technical
issue, however; when descending from a state you’ll get back to the same state due to
the possibility of all cowboys missing. This loop of dependencies can be corrected for
by dividing the total contributions from all the scenarios where some cowboy actually
hits, by 1− p where p is the probability that all cowboys will miss. Care must also be
taken to handle the situations in which a cowboy has several equally beneficial targets,
in which case he will make a random selection between them.

2

Problem B

Tour Guide

Problem author: /dev/duff

This problem is a generalisation of the Traveling salesman problem, where the distance
between the points changes depending on the visit order. Basically, this must be solved
by brute force, trying all possible orders you can collect the tour guests in. This you do
by iterating over all permutations of (1, . . . , n), and choose the permutation that gives
the lowest accumulated time.

In addition, there is a little geometry involved in finding the time needed to catch
up with tour guest. Let your position and speed be (x, y) and v, and the retired
person be at (xi, yi), moving with speed vi in direction ai. Then vix = vi cos ai and
viy = vi sin ai. To find the time t required to catch up, you solve this second order
equation:

(xi − x + vix t)2 + (yi − y + viy t)2 = (vt)2

Since v > vi > 0, this equation always gives one positive and one negative solution.
Choose the positive solution t+ and continue from the new point (xi + vix t+, yi + viy t+)
to find out where you will catch up with the next person in your current permutation.

You must compute the time it takes before all your tour guests have arrived at the
bus.

3

Problem C

Nasty Hacks

Problem author: Truls Amundsen Bjørklund

If the expected revenue when advertising minus the cost of advertising is bigger than
the expected revenue when not advertising, you should advertise. Each test case is
thus solved with an if-else statement.

4

Problem D

Jezzball

Problem author: Jimmy Mårdell

The problem can easily be divided into two equal subproblems: one where we
only consider extending a vertical ray, and one where we only consider extending a
horizontal ray. The best result of these two is the final answer. Because of precision
issues, it’s not possible to simulate extending a ray every second (the first interval
possible may be stepped over) or every 1/10000th of a second (time out). Another
approach is needed, based on calculating when the atoms cross the extension line. In
the outline below we consider extending a vertical ray.

For each atom, calculate when its x-coordinate will intersect the vertical line from
the ray origin (the problem constraints guarantees that an atom will not travel strictly
horizontal or vertical). This will happen two times before the atoms x-coordinate is
repeated. These two intersections are then repeated regularly; calculate the intersection
times during the first 10000 seconds. For each such intersection, calculate the y-
coordinate the atom will have at that time, and based on that calculate the interval at
which this atom would hit an extending ray (based on calculating the total time before
the vertical ray has finished extending, and the time it takes to reach the intersection
point from the ray origin). For each atom and intersection we get a similar interval.
Sort them, and do a linear search among the intervals to find the earliest possible start
point. Don’t forget to also check whether it’s possible to extend a ray at time 0.

The calculations can be made easier by mirroring the playing field horizontally
and vertically. Instead of having the atoms bouncing, they will then wrap around.
Computations can then be done using modulo calculations.

5

Problem E

Card Trick

Problem author: Henrik Eriksson

This is a quite simple task. One will typically process one card at a time, starting with
the smallest. When one should place card i, one just counts upto i free spaces, and
inserts card i in the next free space.

Because n is small, one may also pregenerate solutions to all possible test cases.

6

Problem F

Traveling Salesman

Problem author: Øyvind Grotmol

This problem may be divided into two steps. The first step is to figure out which
countries are neighbors, and the second step is to find the minimum number of borders
the salesman must cross in order to get from country ca to cb.

To figure out which countries are neighbors is actually quite easy even though it
is not made obvious by the problem description. Because no point will be on the line
between two connected points and no two non-adjacent edges of a country may share
a common point, we know that a country is a neighbor of another if and only if they
have a common edge. We may thus hash on the (endpoints pair of the) edges. If two
edges are exactly equal, we know that the two countries they belong to are neighbors.

When we know what countries are neighbors, we may find the number of borders
that need to be crossed by performing a breadth-first search in the graph.

7

Problem G

Whac-a-Mole

Problem author: Kristoffer Arnsfelt Hansen

Let p(x, y, t) be the maximum amount of moles you may have whacked if you have
your hammer placed at position (x, y) after timestep t where −d ≤ x, y < n + d.
Clearly, p(x, y, 0) = 0 because no moles have yet appeared at time 0.

We know that we may end up at position (x, y) after timestep t if we were at

position (x − i, y − j) at time t − 1 for all i, j where
√

(x− i)2 + (y− j)2 ≤ d. We
may also whack all moles appearing in holes centered under a straight line from
(x − i, y − j) to (x, y) at time t. The amount of moles this allows us to whack can
be expressed as:

w(x, y, i, j, t) = m(x, y, t) +
gi, j−1

∑
k=0

m
(

x− i +
k · i
gi, j

, y− j +
k · j
gi, j

, t
)

where gi j = gcd(abs(i), abs(j)) and m(x, y, t) is 1 if there is a mole appearing at
position (x, y) at time t and 0 otherwise. We are now able to express the values in
p(x, y, t) mathematically:

p(x, y, t) =

{
0 if t = 0
max (p(x− i, y− j, t− 1) + w(x, y, i, j, t)) else

i and j may vary as explained above. We are now able to fill a table using dynamic
programming or memoization, and find the maximum value in the table for the last
time step. Notice that we may save some memory by discarding information about all
timesteps except the previous one at any given time.

What made this problem particularly tricky was the fact that it can sometimes be
profitable to move the hammer outside of the actual board.

8

Problem H

Random Walking

Problem author: Gunnar Kreitz

Let pi,v be the probability that the i:th number output is v. We have that p1,v = 1/n for
all nodes v. The probabilities for succesive steps can be computed by

pi,v = ∑
w

pi−1,w

d(w)

where w ranges over all neighbours of v (note that we need to include the same
neighbour several times if there are multiple edges between v and w) and d(w) is the
degree, i.e. the number of edges incident to w (again making sure that multiple edges
are counted).

Once the pi,v are computed, we can compute the probability that a specific bit b is
set in a specific timestep i by summing pi,v over all v such that the b:th bit of v is set.

9

Problem I

Honeycomb Walk

Problem author: Henrik Eriksson

This problem can be solved by dynamic programming. Let W[x, y, s] be the number of
walks on s steps starting from tbe coordinates x, y ending up in the origin x = y = 0.
Then W[x, y, 0] is 1 if x = y = 0, and 0 otherwise. You can represent the hexagonal
grid with a regular matrix in the following manner: For s > 0 we have

W[x, y, s] = W[x− 1, y− 1, s− 1] + W[x, y− 1, s− 1] + W[x + 1, y, s− 1] +
W[x + 1, y + 1, s− 1] + W[x, y + 1, s− 1] + W[x− 1, y, s− 1].

The number of walks with exactly s steps is in the end stored in W[0, 0, s]. The best
would be to compute all answers up to the maximum s before even reading any input,
but programs generating a new array for each input are also accepted.

10

